## PHYTOPLANKTON COMPOSITION IN A BORROW PIT LAKE IN VIRGINIA

## Seba B. Sheavly and Harold G. Marshall

Abstract. – The phytoplankton assemblages in Lake Trashmore, Virginia, a borrow pit, were dominated by centric diatoms and cyanobacteria, with seasonal pulses of cryptomonads, euglenoids, and chlorophyceans. Ninety species were identified and their abundance levels noted for a 12-month period.

Borrow pit lakes are generally associated with highway construction and residential landscaping. In contrast, this borrow pit lake was formed as part of an above-ground landfill operation. Alternate layers of soil and refuse were laid down to eventually form a mound that was capped with soil, then landscaped. The pit formed in this process was gradually filled with water by 1971. The lake is located in Virginia Beach, Virginia, where it is now a part of a recreational park complex. The lake has a mean depth of 4 m, a maximum depth of 7.3 m, a surface area of 21 ha, and a volume of  $8.4 \times 10^5$ m<sup>3</sup> (Virginia State Water Control Board 1982). The surrounding area is highly developed. The lake is flanked to the north and south by major highways and is adjacent to the disposal mound (Mount Trashmore) on the west, with residential development along the eastern section.

The purpose of this study was to identify the seasonal phytoplankton composition and concentrations of this lake and to make comparisons with a phytoplankton survey of the lake made over a decade ago (Cocke 1973).

Other phytoplankton studies in Virginia have concentrated on the two natural lakes in the state, Lake Drummond and Mountain Lake (Simmons & Neff 1974, Marshall 1979). In addition, the National Eutrophication Survey (Anonymous 1972) included eight other Virginia lakes and reservoirs that were of greater size than Lake Trashmore, and all were found to be eutrophic. Phytoplankton were included in a limited water quality study during the early formation of Lake Trashmore by Beck (1973). He indicated an abundance of diatoms, chlorophyceans, cyanobacteria and phytoflagellates. Later Cocke (1973) completed a one year study of the lake and reported 45 taxa, with chlorophyceans and diatoms dominant.

In general, borrow pit lake studies are rare. In Nebraska, McCarraher et al. (1974) surveyed 41 borrow pit lakes in the Platte River Valley, with Adrian et al. (1970) conducting a primary productivity study on one lake. Seven Illinois borrow pit ponds were studied by Lipsey (1980). In all of these studies, the formation of borrow pits was associated with a major highway development. Diatoms, cyanobacteria and chlorophyceans were generally the dominant forms in these ponds or lakes.

Methods. — One collection station was established at the center and deepest (7.3 m) portion of the lake. Samples were collected monthly from the upper and lower 0.5 m of the euphotic zone from Mar 1985 to Feb 1986. The lower sampling depth was determined from transparency measurements with a Secchi disk (15 cm diam), according to Holmes (1970). A Kemmerer water bottle (2 liter) was used to obtain 500 ml water samples from both depths. These were preserved immediately with Lugol's solution and returned to the laboratory, where a settling and siphoning procedure was followed to obtain a 40 ml concentrate. Aliquots were taken from this concentrate and placed in settling chambers for examination with a Zeiss inverted plankton microscope. A random field and minimum count procedure was followed at magnifications of  $312 \times$  and  $500 \times$  for micro-, nano-, and picoplankton for a precision estimate of 85%. In addition, the net phytoplankton were counted by scanning the entire chamber at  $125 \times$ .

*Results.* – Mean water temperatures ranged from 4.0°C in January to 27.3°C in August, with only small differences generally found with depth in the euphotic zone. The mean monthly pH value was 7.52, with a range from 6.5 (Dec) to 8.6 (Sep). Secchi disk readings ranged from 0.47 m (Mar) to 1.18 m (Aug), averaging 0.84 m.

Ninety phytoplankton species were identified in this study (Table 1), including 32 Chlorophyceae, 28 Bacillariophyceae, 16 Cyanobacteria, 8 Euglenophyceae, 5 Dinophyceae, and 1 Cryptophyceae. Unidentified picoplankton and nanoplankton cells were counted by size groups <3, 3–5 and 5–10  $\mu$ m. They were present throughout the year, with lowest concentrations in May (3.7  $\times$  10<sup>6</sup> cells/liter), gradually increasing to a December high ( $61.5 \times 10^6$  cells/liter). The majority of these cells were  $<3 \ \mu m$  in size and under epifluorescence microscopy proved to be cyanobacteria. In contrast, larger and identifiable cyanobacteria had one major pulse in summer and early fall, reaching  $37.0 \times 10^6$  cells/liter in September. Euglenoids and dinoflagellates also had high summer concentrations. In contrast, the cryptomonads were in lowest concentrations in summer and early fall and became more abundant during winter and spring. The diatoms had low concentrations in spring and summer, gradually increased into fall and early winter and peaked in December  $(9.4 \times 10^6 \text{ cells/liter})$ . The dominant species were Cyclotella spp. and Melosira spp., with representatives from these genera most common in the unidentified category of centric diatoms  $<20 \ \mu m$  size.

Discussion. - In comparison to early data on phytoplankton populations in Lake Trashmore (Beck 1973, Cocke 1973), there has been a shift in composition and dominant species. Cocke identified 45 species in a seven-month study (Aug-Feb), with the two dominant groups: pennate diatoms (e.g., Pleurosigma normanii, P. strigosum) and chlorophyceans (Pediastrum simplex) the major species. He found cvanobacteria (blue-green algae) to be common, but not abundant. Other dominant species included the desmids Closterium lunuae and Cosmarium circulare, the diatoms Fragilaria crotonensis, Melosira spp., Navicula spp., and the dinoflagellate Gymnodinium simplex. Secchi disk readings at this time ranged between 24.0 and 54.0 cm, averaging 40.9 cm. The range of the surface pH values was 6.6 to 7.1, averaging 6.8. The present study indicated a more basic pH mean of 7.52, ranging between 6.5 and 8.6. However, the Secchi disk readings were higher, averaging 84 cm, with readings between 47 cm (Mar) and 118 cm (Aug).

In addition to an increased diversity of species, there has been a change over the past decade in the phytoplankton populations in Lake Trashmore. The transition has been from a dominance of pennate diatoms, chlorophyceans, and a filamentous-coccoid assemblage of cyanobacteria to the current status, where cyanobacteria, centric diatoms (e.g., Cyclotella spp., Melosira spp.), plus a seasonal abundance of cryptomonads, euglenoids, and chlorophyceans are dominant. It is impossible to evaluate the significance of the high picoplankton and nanoplankton ( $< 10 \,\mu m$ ) concentrations because Cocke's collection procedure by tow net would not have collected many of these cells. However, these changes in phytoplankton composition and abundance are assumed to be in association with the changing and advancing eutrophic state of the lake over the past decade.

Table 1.—Mean monthly abundance for each identified taxon (cells/liter).

|                                          | Mar       | Apr     | May     | Jun     |
|------------------------------------------|-----------|---------|---------|---------|
| Desillerienkusses                        |           | ·       |         |         |
| Bacharlophyceae                          | 17.000    | (2)     | 50.50   |         |
| Achnanthes sp.                           | 47,268    | 639     | 5373    | 757     |
| Amphora costata W. Smith                 | 0         | 0       | 0       | 213     |
| Amphora sp.                              | 0         | 21      | 0       | 0       |
| Biddulphia alternans (Bailey) Van Heurck | 0         | 0       | 5       | 0       |
| Cocconeis distans Gregory                | 21        | 0       | 0       | 0       |
| Cyclotella meneghiniana Kützing          | 0         | 77,867  | 29,373  | 18,131  |
| Cyclotella sp.                           | 273,843   | 27,084  | 28,213  | 4578    |
| C. striata (Kützing) Grunow              | 0         | 0       | 18,056  | 0       |
| Cylindrotheca closterium (Ehrenberg)     |           |         |         |         |
| Reimann & Lewin                          | 277       | 0       | 0       | 53      |
| Cymbella sp.                             | 9515      | 602     | 123     | 85      |
| Diploneis sp.                            | 0         | 0       | 16      | 12      |
| Fragilaria sp.                           | 0         | 0       | 0       | 10,579  |
| Gomphonema sp.                           | 0         | 0       | 16      | 53      |
| Gyrosigma sp.                            | 0         | 0       | 0       | 21      |
| Melosira distans (Ehrenberg) Kützing     | 33,824    | 0       | 0       | 0       |
| M. granulata (Ehrenberg) Ralfs           | 221,898   | 9649    | 299     | 1664    |
| M. islandica Muller                      | 5195      | 0       | 4557    | 85      |
| M. moniliformis (Muller) Agardh          | 0         | 0       | 32      | 0       |
| Melosira sp.                             | 0         | 37      | 107     | 427     |
| Navicula spp.                            | 9813      | 37      | 32      | 117     |
| Nitzschia clausii Hantzsch               | 0         | 0       | 0       | 64      |
| N. pungens Grunow                        | 43        | 0       | 0       | 75      |
| N. seriata Cleve                         | 43        | 0       | 0       | 0       |
| Nitzschia sp.                            | 14,411    | 16      | 0       | 32      |
| Rhizosolenia eriensis H. L. Smith        | 0         | 0       | 0       | 0       |
| Synedra acus Kaützing                    | 0         | 0       | 0       | 0       |
| Synedra spp.                             | 0         | 21      | 85      | 587     |
| Thalassionema nitzschioides (Grunow)     |           |         |         |         |
| Grunow & Hustedt                         | 0         | 16      | 0       | 384     |
| centrics (unid.) $< 20 \ \mu m$ diam.    | 285.376   | 293,413 | 178,303 | 81.607  |
| centrics (unid.) 20–100 µm diam.         | 109.243   | 0       | 0       | 14.374  |
| pennates (unid.) > 20 $\mu$ m in length  | 51,857    | 56,426  | 28.341  | 22.072  |
| pennates (unid) $< 20 \ \mu m$ in length | 26.076    | 112     | 101     | 21      |
| subtotal                                 | 1 088 703 | 465 940 | 294 032 | 156,000 |
| Dinophyceae                              | 1,000,100 | 100,910 |         | 100,000 |
| Coratium hirundinolla (O F Muller)       |           |         |         |         |
| Dujardin                                 | 0         | 0       | 368     | 10.040  |
| Clandinium munadinium Depard             | 0         | 0       | 508     | 19,040  |
| Glanodinium sp                           | 0         | 2       | 0       | 43      |
| Gumnodinium sp.                          | 0         | 5       | 0       | 36 113  |
| Brotonoridinium sp.                      | 0         | 0       | 0       | 50,115  |
| subtotal                                 | 0         | 3       | 368     | 55,292  |
| Cyanobacteria                            |           |         |         |         |
| Anabaena sp                              | 725       | 23 138  | 0       | 576     |
| Chrococcus limnocticus Lemmerman         | 125       | 23,130  | 0       | 477 533 |
| Dactulococconsis rankidiodas Hansaira    | 2 607 820 | 920 865 | 478 484 | 101 230 |
| Comphosphaeria aponing Kutzing           | 120 610   | 152     | 2204    | 0028    |
| Johanneshaptistia pollucida (Dickie)     | 120,010   | 132     | 2294    | 9020    |
| Taylor & Drouet                          | 0         | 0       | 0       | 0       |
| I vnghva controta I emmermann            | 0         | 0       | 0       | 0       |
| Lyngoya comota Lemmermann                | U         | U       | U       | v       |

Table 1.—Continued.

| Jul        | Aug       | Sep       | Oct           | Nov       | Dec       | Jan     | Feb       |
|------------|-----------|-----------|---------------|-----------|-----------|---------|-----------|
|            |           |           |               |           |           |         |           |
| 1984       | 0         | 0         | 0             | 0         | 256       | 0       | 0         |
| 469        | 64        | 107       | ů<br>0        | 0         | 0         | 0       | 64        |
| 0          | 0         | 0         | ů<br>0        | 0         | 247       | Ő       | 0         |
| 0          | 0         | 0         | 0             | 0         | 0         | 0       | 0         |
| 0          | 0         | 0         | 0             | 0         | 0         | 0       | 0         |
| 18,057     | 18,078    | 36,113    | 0             | 36,455    | 180,907   | 55,297  | 483,016   |
| 9028       | 135,532   | 270,850   | 81,255        | 81,255    | 424,328   | 40,626  | 731,316   |
| 0          | 0         | 22,571    | 0             | 0         | 0         | 0       | 40,628    |
|            |           |           |               |           |           |         |           |
| 0          | 32,154    | 46,187    | 0             | 128       | 213       | 208     | 725       |
| 43         | 64        | 277       | 128           | 128       | 640       | 32      | 139       |
| 43         | 0         | 0         | 0             | 0         | 0         | 0       | 0         |
| 533        | 853       | 36,849    | 0             | 341       | 768       | 0       | 0         |
| 0          | 64        | 0         | 0             | 0         | 0         | 0       | 0         |
| 0          | 0         | 0         | 26 415        | 1 262 278 | 2 402 654 | 127 677 | 152 790   |
| 28 557     | 21.864    | 248.010   | 30,413        | 1,303,278 | 3,403,034 | 13/,0// | 155,780   |
| 20,337     | 1472      | 240,919   | 108,108       | 800,730   | 5,710,012 | 343,004 | 090,008   |
| J20        | 0         | 427       | 198,025       | 0         | 0         | 0       | 0         |
| 9220       | 0         | 0         | 40            | 0         | 0         | 0       | 0         |
| 768        | 939       | 2965      | 1493          | 256       | 1963      | 64      | 18.099    |
| 9114       | 4557      | 0         | 0             | 0         | 256       | 0       | 0         |
| 0          | 0         | 0         | 0             | 0         | 0         | 0       | 0         |
| 0          | 0         | 0         | 0             | 0         | 0         | 0       | 0         |
| 128        | 0         | 555       | 0             | 0         | 0         | 0       | 0         |
| 0          | 117,432   | 63,198    | 0             | 0         | 0         | 0       | 0         |
| 43         | 875       | 53,675    | 128           | 469       | 700       | 517     | 789       |
| 597        | 51,789    | 124,323   | 49,878        | 3029      | 3212      | 171     | 299       |
|            |           |           |               |           |           |         |           |
| 299        | 18,505    | 272,215   | 0             | 0         | 180,799   | 0       | 0         |
| 117,368    | 153,482   | 329,534   | 135,425       | 261,864   | 1,426,466 | 279,190 | 1,923,035 |
| 21         | 21        | 18,227    | 0             | 213       | 640       | 38,369  | 31,599    |
| 22,571     | 9028      | 99,312    | 54,170        | 939       | 232,435   | 58,682  | 90,282    |
| 210 248    | 40,734    | 1 626 645 | 1 2 2 5 7 4 9 | /08       | 1244      | 8028    | 233       |
| 219,240    | 017,507   | 1,020,045 | 1,525,740     | 2,333,879 | 9,309,433 | 901,930 | 4,104,983 |
|            |           |           |               |           |           |         |           |
|            |           |           |               |           |           |         |           |
| 5589       | 3392      | 23,467    | 13,227        | 1408      | 537       | 16      | 0         |
| 85         | 1835      | 1771      | 981           | 0         | 0         | 0       | 0         |
| 213        | 0         | 1600      | 18,185        | 0         | 0         | 0       | 0         |
| 04         | 0         | 0         | 0             | 0         | 0         | 22,570  | 0         |
| 43<br>5004 | 5227      | 26.838    | 22 202        | 1409      | 527       | 22.5%   | 0         |
| 3334       | 5221      | 20,030    | 32,393        | 1408      | 557       | 22,380  | 0         |
|            |           |           |               |           |           |         |           |
| 1,173,683  | 9,619,689 | 6,238,578 | 1,760,525     | 2987      | 356,250   | 0       | 0         |
| 537,186    | 64,009    | 643,401   | 451,417       | 504,161   | 2,644,782 | 205,091 | 175,549   |
| 94,947     | 0         | 225,708   | 370,162       | 353,897   | 839,628   | 815,906 | 1,047,287 |
| 0          | 128       | 100,784   | 397,247       | 91,862    | 58,479    | 21,479  | 32,815    |
| 2.4.1      | 0         |           | 0             | 0         | 0         | 0       | 0         |
| 341        | 704 402   | 174.008   | 64 250        | 0         | 0         | 0       | 0         |
| 0          | /94,493   | 174,098   | 04,330        | 0         | 0         | 0       | 0         |

Table 1.—Continued.

|                                          |           |           | Tanal I   |           |
|------------------------------------------|-----------|-----------|-----------|-----------|
|                                          | Mar       | Apr       | May       | Jun       |
| Merismopedia glauca (Ehrenberg)          |           |           |           |           |
| Naegeli                                  | 0         | 0         | 0         | 0         |
| Merismopedia punctata Meyen              | 0         | 0         | 8038      | 18,526    |
| Merismopedia sp.                         | 0         | 0         | 0         | 0         |
| Merismopedia tenuissima Lemmermann       | 0         | 0         | 0         | 0         |
| Microcystis aeruginosa Kützing           | 408,516   | 2,471,603 | 2,059,101 | 2,719,878 |
| Nostoc commune Vaucher                   | 277       | 15,738    | 432       | 779       |
| Oscillatoria limnetica Lemmermann        | 0         | 0         | 0         | 0         |
| Oscillatoria sp.                         | 0         | 32        | 208       | 4274      |
| Spirulina laxa G. M. Smith               | 0         | 0         | 0         | 53        |
| Spirulina subsalsa Oersted               | 0         | 0         | 0         | 32        |
| blue green spheres (unid)                | 0         | 0         | 54,168    | 0         |
| blue green trichomes (unid)              | 64        | 1129      | 6782      | 23,010    |
| subtotal                                 | 3,138,021 | 3,432,657 | 2,609,507 | 3,354,919 |
| Euglenophyceae                           |           |           |           |           |
| Euglena acus Ehrenberg                   | 0         | 0         | 0         | 0         |
| Euglena sp.                              | 0         | 0         | 0         | 1821      |
| Eutreptia lanowii Steuer                 | 2257      | 52,529    | 22,591    | 87,704    |
| Eutreptia viridis Perty                  | 85        | 0         | 5         | 43        |
| Phacus longicaudus (Ehrenberg) Dujardin  | 0         | 0         | 0         | 0         |
| Phacus curvicaudus Swirenko              | 0         | 0         | 0         | 0         |
| Trachelomonas hispida (Perty) Stein      | 0         | 0         | 0         | 0         |
| Trachelomonas volvocina Ehrenberg        | 0         | 0         | 0         | 76,608    |
| subtotal                                 | 2342      | 52,529    | 22,591    | 182,572   |
| Chlorophyceae                            |           |           |           |           |
| Ankistrodesmus falcatus Beijerinck       | 156 672   | 27 655    | 31 316    | 31 445    |
| Ankistrodesmus fractus (West & West)     | 100,072   | 27,000    | 51,510    | 51,115    |
| Brunnthaler                              | 0         | 0         | 0         | 0         |
| Chlorella sp                             | 9028      | Ő         | Ő         | ů<br>0    |
| Chlorella vulgaris Beijerinck            | 0         | Ő         | 0<br>0    | 4104      |
| Cosmarium hotrytis Meneghini             | 0         | ů<br>0    | Ő         | 0         |
| Crucigenia aniculata (Lemmermann)        | Ŭ         | Ŭ         | Ŭ         | Ŭ         |
| Schmidle                                 | 0         | 0         | 0         | 0         |
| Crucigenia fenestrata Schmidle           | 92.219    | 0         | Ő         | 18.057    |
| Crucigenia auadrata Morren               | 0         | 0         | 9113      | 744.539   |
| Crucigenia sp.                           | 0         | ů<br>0    | 4514      | 0         |
| Crucigenia tetrapedia (Kirchner) West    |           |           |           |           |
| & West                                   | 1.831.853 | 143,152   | 0         | 207,908   |
| Dictvosphaerium pulcellum Wood           | 1365      | 309,316   | 143,839   | 2,013,046 |
| Euastrum denticulatum (Kirchner) Gay     | 0         | 0         | 0         | 21        |
| Franceia droescheri (Lemmermann)         | 0         | 0         | 0         | 0         |
| Kirchneriella contorta (Schmidle) Bohlin | 191,125   | 293,977   | 302,438   | 283,177   |
| Lagerheimia ciliata (Lagerheim) Chodat   | 0         | 0         | 0         | 0         |
| Lagerheimia quadriseta Lemmermann        |           |           |           |           |
| (G. M. Smith)                            | 0         | 0         | 0         | 0         |
| Micractinium pusillum Frensenius         | 0         | 0         | 0         | 0         |
| Oedogonium sp.                           | 0         | 0         | 421       | 0         |
| Oocystis borgei Snow                     | 114,091   | 129,214   | 105,047   | 250,682   |
| Pediastrum duplex Meyen                  | 0         | 0         | 0         | 0         |
| Pediastrum simplex (Meyen)               |           |           |           |           |
| Lemmermann                               | 36,147    | 421       | 1259      | 5845      |
| Scenedesmus armatus (Chodat) G. M. Smith | 363       | 0         | 0         | 0         |

Table 1.—Continued.

| Jul        | Aug        | Sep        | Oct         | Nov       | Dec           | Jan       | Feb     |
|------------|------------|------------|-------------|-----------|---------------|-----------|---------|
| 0          | 116.067    | 0          | 241         | 0         | 0             | 0         | 0       |
| 0          | 115,257    | 2123       | 341<br>1024 | 308 329   | 0<br>704      | 0         | 0       |
| 0          | 0          | 0          | 0           | 288.907   | 704           | 0         | 0       |
| 0          | 0          | 15,924,935 | 5,673,395   | 870,724   | 928           | 18,056    | 0<br>0  |
| 10,251,540 | 7,031,505  | 8,564,855  | 9,331,530   | 6,593,405 | 4,709,592     | 82,145    | 251,908 |
| 2,902,609  | 6,414,631  | 4,441,940  | 5,254,490   | 3,891,212 | 2,146,677     | 928,350   | 853     |
| 0          | 993,117    | 672,611    | 361,133     | 0         | 0             | 0         | 0       |
| 22,912     | 13,756     | 0          | 18,057      | 0         | 427           | 32        | 0       |
| 0          | 18,6/5     | 85         | 0           | 1/1       | 0             | 0         | 0       |
| 0          | 90/1       | 0          | 0           | 0         | 0             | 0         | 0       |
| 4514       | 9028       | 90,283     | 18,057      | 43        | ů<br>0        | 48        | 213     |
| 14,987,732 | 25,083,530 | 37,079,401 | 23,701,728  | 1,290,568 | 10,757,467    | 2,071,107 | 150,862 |
|            |            |            |             |           |               |           |         |
| 0          | 192        | 299        | 0           | 0         | 0             | 0         | 0       |
| 39,953     | 12,634     | 186,958    | 55,493      | 768       | 341           | 0         | 0       |
| 126,397    | 54,234     | 288,907    | 180,567     | 63,284    | 208,333       | 80        | 4099    |
| 0          | 21         | 0          | 0           | 0         | 0             | 0         | 0       |
| 0          | 256        | 77 001     | 95 446      | 128       | 0             | 32        | 0       |
| 448        | 832        | 832        | 46 282      | 118 307   | 2603          | 16 992    | 49 763  |
| 32,218     | 0          | 0          | 27,085      | 72,227    | 54,170        | 16,928    | 63,433  |
| 198,568    | 67,785     | 555,751    | 404,873     | 256,037   | 265,447       | 34,032    | 154,186 |
|            |            |            |             |           |               |           |         |
| 66,646     | 9600       | 46,780     | 317,562     | 72,133    | 8021          | 437       | 405     |
| 0          | 0          | 0          | 0           | 0         | 112,487       | 6485      | 2112    |
| 0          | 0          | 0          | 0           | 0         | 0             | 0         | 0       |
| 0          | 0          | 0          | 0           | 0         | 0             | 0         | 0       |
| 0          | 0          | 36,113     | 0           | 384       | 0             | 0         | 0       |
| 0          | 0          | 0          | 0           | 583,616   | 1,529,376     | 252,869   | 597     |
| 0          | 0          | 0          | 0           | 63,198    | 0             | 341       | 77,082  |
| 72,376     | 162,851    | 110,900    | 580,928     | 361,133   | 1,011,507     | 27,575    | 1280    |
| 18,057     | 0          | 0          | 0           | 0         | 0             | 0         | 235     |
| 341        | 0          | 144,453    | 306,963     | 184,151   | 1,594,264     | 188,460   | 277,399 |
| 0          | 0          | 0          | 0           | 0         | 0             | 0         | 0       |
| 128        | 9178       | 135,425    | 597         | 299       | 1024          | 0         | 0       |
| 18,057     | 0          | 0          | 0           | 384       | 1 1 1 0 9 4 4 | 125.264   | 112.976 |
| 18,057     | 22 571     | 0          | 4949        | 0         | 1,119,044     | 125,204   | 112,870 |
| 0          | 22,071     | Ŭ          | Ŭ           | Ŭ         | Ŭ             | Ŭ         | Ŭ       |
| 63,198     | 58,684     | 18,057     | 171         | 0         | 341           | 0         | 0       |
| 0          | 0          | 0          | 4779        | 0         | 0             | 0         | 0       |
| 176.052    | 361 290    | 187 701    | 207 247     | 207.025   | 2 058 442     | 164 761   | 171 773 |
| 0          | 01,389     | 407,701    | 0           | 297,933   | 2,038,442     | 04,701    | 0       |
| 0          | 0          | 0          | 0           | 0         | U             | U         | Ū.      |
| 10,197     | 10,603     | 63,957     | 88,832      | 153,583   | 55,808        | 599       | 1792    |
| 0          | 0          | 0          | 0           | 0         | 0             | 0         | 0       |

Table 1.—Continued.

|                                           | Mar        | Apr        | May       | Jun        |
|-------------------------------------------|------------|------------|-----------|------------|
| Scenedesmus bijugus Turpin Lager.         | 20.096     | 2343       | 0         | 37.685     |
| Scenedesmus dimorphus (Turpin) Kutzing    | 0          | 0          | 0         | 85         |
| Scenedesmus quadricaudus (Turpin)         |            |            |           |            |
| Brébisson                                 | 9625       | 40,405     | 27,276    | 196,406    |
| Scenedesmus sp.                           | 85         | 11,285     | 4530      | 18,398     |
| Selenastrum gracile Reinsch               | 0          | 0          | 0         | 0          |
| Staurastrum americanum (West & West) G. M | м.         |            |           |            |
| Smith                                     | 0          | 0          | 11        | 0          |
| Staurastrum leptocladum var. insigne West |            |            |           |            |
| & West                                    | 0          | 0          | 80        | 3008       |
| Staurastrum paradoxum Meyen               | 0          | 0          | 11        | 341        |
| Staurastrum sp.                           | 0          | 37         | 43        | 117        |
| Tetraedron minimum (Braun) Hansgirg       | 64         | 580        | 21        | 102,122    |
| Chlorophyceans (unid.)                    | 1/1        | 16,928     | 136,549   | 650,038    |
| subtotal                                  | 2,462,904  | 975,313    | /66,468   | 4,567,024  |
| Cryptophyceae                             |            |            |           |            |
| Cryptomonas sp.                           | 825,700    | 1,816,905  | 1,271,836 | 554,242    |
| subtotal                                  | 825,700    | 1,816,905  | 1,271,836 | 554,242    |
| Other taxa                                |            |            |           |            |
| micro-phytoflagellates $<10 \ \mu m$      | 47,637     | 0          | 0         | 175,407    |
| micro-phytoflagellates >10 $\mu$ m        | 0          | 0          | 8215      | 43,810     |
| small green spheres ( $<3 \mu m$ )        | 18,320,895 | 3,792,191  | 3,348,778 | 9,835,356  |
| small green spheres $(3-5 \ \mu m)$       | 4,786,425  | 470,241    | 262,864   | 675,405    |
| small green spheres (5–10 $\mu$ m)        | 997,156    | 131,192    | 84,883    | 115,001    |
| subtotal                                  | 24,152,113 | 4,393,624  | 3,704,740 | 10,844,979 |
| Total                                     | 31,669,783 | 11,136,971 | 869,542   | 19,715,028 |

## Literature Cited

- Adrian, G. L., C. Throckmorton, & R. McDonald. 1970. A study of primary production in a Nebraska Interstate 80 lake. – Transactions of the Kansas Academy of Science 73(2):227–236.
- Anonymous. 1972. Water quality criteria. A report of the Committee on Water Quality Criteria. – National Academy of Science and National Academy of Engineering. Washington, D.C., 219 pp.
- Beck, W. M., Jr. 1973. Building an amphitheater and costing ramp of municipal solid waste. U.S. Environmental Protection Agency. SW-52d.of. Office of Solid Waste Programs Vol. I and II. Washington, D.C., 265 pp.
- Cocke, G. R. 1973. A comparative limnological survey of a brackish water lake and freshwater lake at Mount Trashmore, Virginia Beach, Virginia. Masters Thesis. Old Dominion University, Norfolk, Virginia, 120 pp.

- Holmes, R. W. 1970. The secchi disk in turbid coastal waters.—Limnology and Oceanography 15:688– 694.
- Lipsey, L. L. 1980. Phytoplankton of selected borrow pit ponds in northern Illinois.—Ohio Journal of Science 80(3):108–113.
- Marshall, H. G. 1979. Lake Drummond: With a discussion regarding its plankton composition. Pp. 169–182 in P. W. Kirk, ed., The Great Dismal Swamp. University Press, Charlottesville, Virginia.
- McCarraher, D. B., R. McDonald, & G. Adrian. 1974. Some hydrobiological characteristics of Interstate-80 highway lakes in Nebraska.—Transactions of the Kansas Academy of Science 77(2): 93–102.
- Simmons, G. M., & S. E. Neff. 1974. Observations on limnetic carbon assimilation rates in Mountain Lake, Virginia during its thermal stratification periods.—Virginia Journal of Science 24(4):206–211.

Table 1.—Continued.

| Jul        | Aug        | Sep        | Oct        | Nov        | Dec        | Jan        | Feb        |
|------------|------------|------------|------------|------------|------------|------------|------------|
| 388,218    | 173,006    | 439,333    | 507,080    | 257,401    | 15,104     | 299        | 1365       |
| 128        | 341        | 72,483     | 683        | 0          | 1024       | 0          | 0          |
| 193.623    | 55,109     | 218,088    | 361,133    | 3,250,202  | 326,042    | 84,234     | 198,623    |
| 49,656     | 0          | <u>́</u> 0 | 153,482    | 35,455     | 270,847    | 0          | 0          |
| 0          | 0          | 21,662     | 128        | 0          | 0          | 0          | 0          |
| 0          | 0          | 0          | 0          | 0          | 981        | 0          | 64         |
| 555        | 2688       | 1536       | 1621       | 1579       | 512        | 16         | 0          |
| 128        | 1152       | 1314       | 724        | 384        | 256        | 0          | 64         |
| 13,628     | 85         | 0          | 0          | 0          | 0          | 32         | 0          |
| 72,227     | 148,968    | 230,223    | 252,793    | 99,696     | 622,950    | 27,153     | 27,192     |
| 1,060,829  | 871,234    | 3,954,410  | 21,397,150 | 1,932,063  | 3,186,975  | 354,349    | 442,388    |
| 2,227,102  | 1,887,651  | 5,982,435  | 24,376,822 | 4,752,529  | 11,915,805 | 1,232,874  | 1,315,247  |
|            |            |            |            |            |            |            |            |
| 306,963    | 446,903    | 979,574    | 451,417    | 486,558    | 1,733,426  | 822,677    | 1,584,473  |
| 306,963    | 446,903    | 979,574    | 451,417    | 486,558    | 1,733,426  | 822,677    | 1,584,473  |
|            |            |            |            |            |            |            |            |
| 81,255     | 279,878    | 419,818    | 343,077    | 379,190    | 442,385    | 144,448    | 18,057     |
| 15,335     | 153,353    | 0          | 0          | 591,435    | 219,050    | 240,959    | 503,816    |
| 14,763,970 | 14,238,250 | 18,641,155 | 13,708,148 | 16,143,985 | 56,011,283 | 5,542,049  | 12,748,730 |
| 1,171,918  | 104,048    | 3,066,790  | 1,533,350  | 1,555,255  | 3,986,723  | 353,223    | 657,151    |
| 328,575    | 394,290    | 6,900,008  | 635,245    | 240,955    | 876,203    | 35,596     | 120,478    |
| 16,361,053 | 16,106,241 | 22,817,681 | 16,219,820 | 18,910,820 | 61,535,644 | 6,316,275  | 14,048,232 |
| 34,306,660 | 44,214,844 | 69,068,298 | 66,512,801 | 39,870,929 | 95,777,761 | 11,461,481 | 22,775,746 |

Virginia State Water Control Board. 1982. Classification and Priority Listing of Virginia Lakes. U.S. Environmental Protection Agency. S-003219-010. Richmond, Virginia, 727 pp. Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529.